Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning.

نویسندگان

  • Surabhi Maheshwari
  • Michal Brylinski
چکیده

The identification of protein-protein interactions is vital for understanding protein function, elucidating interaction mechanisms, and for practical applications in drug discovery. With the exponentially growing protein sequence data, fully automated computational methods that predict interactions between proteins are becoming essential components of system-level function inference. A thorough analysis of protein complex structures demonstrated that binding site locations as well as the interfacial geometry are highly conserved across evolutionarily related proteins. Because the conformational space of protein-protein interactions is highly covered by experimental structures, sensitive protein threading techniques can be used to identify suitable templates for the accurate prediction of interfacial residues. Toward this goal, we developed eFindSite(PPI) , an algorithm that uses the three-dimensional structure of a target protein, evolutionarily remotely related templates and machine learning techniques to predict binding residues. Using crystal structures, the average sensitivity (specificity) of eFindSite(PPI) in interfacial residue prediction is 0.46 (0.92). For weakly homologous protein models, these values only slightly decrease to 0.40-0.43 (0.91-0.92) demonstrating that eFindSite(PPI) performs well not only using experimental data but also tolerates structural imperfections in computer-generated structures. In addition, eFindSite(PPI) detects specific molecular interactions at the interface; for instance, it correctly predicts approximately one half of hydrogen bonds and aromatic interactions, as well as one third of salt bridges and hydrophobic contacts. Comparative benchmarks against several dimer datasets show that eFindSite(PPI) outperforms other methods for protein-binding residue prediction. It also features a carefully tuned confidence estimation system, which is particularly useful in large-scale applications using raw genomic data. eFindSite(PPI) is freely available to the academic community at http://www.brylinski.org/efindsiteppi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

eFindSite: Improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands

Molecular structures and functions of the majority of proteins across different species are yet to be identified. Much needed functional annotation of these gene products often benefits from the knowledge of protein-ligand interactions. Towards this goal, we developed eFindSite, an improved version of FINDSITE, designed to more efficiently identify ligand binding sites and residues using only w...

متن کامل

A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation.

The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across gro...

متن کامل

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

eThread: A Highly Optimized Machine Learning-Based Approach to Meta-Threading and the Modeling of Protein Tertiary Structures

Template-based modeling that employs various meta-threading techniques is currently the most accurate, and consequently the most commonly used, approach for protein structure prediction. Despite the evident progress in this field, accurate structure models cannot be constructed for a significant fraction of gene products, thus the development of new algorithms is required. Here, we describe the...

متن کامل

FINDSITE-metal: integrating evolutionary information and machine learning for structure-based metal-binding site prediction at the proteome level.

The rapid accumulation of gene sequences, many of which are hypothetical proteins with unknown function, has stimulated the development of accurate computational tools for protein function prediction with evolution/structure-based approaches showing considerable promise. In this article, we present FINDSITE-metal, a new threading-based method designed specifically to detect metal-binding sites ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular recognition : JMR

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2015